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Grain Boundary Parameters  
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The specification of the boundary between adjacent crystals of the same solid is discussed. It is shown 
that for planar boundaries the minimum number of parameters required is nine. A convenient choice 
of the grain boundary parameters is indicated, and their effect on the boundary structure exemplified. 

1. Introduction 

The specification of a grain boundary is a basic ques- 
tion when discussing the structure and properties of 
grain boundaries in crystalline solids. In general, the 
relative orientation of the two adjacent crystals is 
given in terms of an axis/angle pair, and, for planar 
boundaries, the orientation of the plane of the boundary 
is also specified. This involves giving the values of 5 
parameters, 3 to specify the relative orientation of the 
two crystals and 2 to indicate the plane of the boundary. 
However, a description in terms of 5 parameters is not 
complete, and it will be shown in the present paper 
that more parameters have to be introduced in order 
to completely characterize a grain boundary. 

2. The relative orientation of the two crystals 

We take two crystals in an arbitrary orientation, and 
consider the problem of specifying the relative orienta- 
tion of their identical space lattices A and B. Each 
lattice may be regarded as a 'solid' and we take lattice 
A as the reference 'solid'. Then lattice B has 6 degrees 
of freedom, as any solid has. The 6 parameters required 
to specify the relative orientation of A and B may be 
chosen in a variety of ways. A particularly convenient 
choice is the following. The actual configuration of 
lattice B can be obtained from lattice A by the product 
of a rotation and translation of A. The rotation can 
always be chosen so that the axis of rotation w contains 
a lattice point PA of lattice A. We thus need two param- 
eters to specify the axis and another which is the angle 
of rotation 0. Finally the translation t which brings 
the rotated A lattice (At) in coincidence with B, is 
determined by 3 parameters, for instance the 3 compo- 
nents of t parallel to the crystal axes of A (or At). 

A particular bicrystal will then be specified as fol- 
lows: (w,0,t) with the convention that w contains a 
lattice point PA of A. The translation t is not, in general, 
taken into account in the various grain-boundary 
models (Brandon, Ralph, Ranganathan & Wald, 1964; 
Brandon, 1966; Bishop & Chalmers, 1968), but it has 
an appreciable effect on the atomic configuration at the 
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grain boundary. Fig. 1 shows, in a two dimensional 
representation, the effect of t on the grain boundary 
structure. The axis w, normal to the plane of the Figure, 
contains the lattice point PA and 0=53.1 ° (tg 0=~).  
In Fig. l(a) the translation is zero ( t=0)  and there is 
partial coincidence of lattice points. In Fig. l(b), t # 0  
and no coincidence occurs. 

Since each lattice is invariant to a translation by a 
lattice vector, the axis w may be chosen to contain a 
given lattice point. The translation t will in general 
change as the lattice point PA is replaced by another lat- 
tice vector of A and a lattice vector of A,. In some appli- 
cations it may be convenient to choose the shortest 
vector t to describe the relative orientation of the two 
crystals. This will be the vector between the pair of lattice 
points, PA and Pn, one in each lattice, which are closest 
to each other. The axis of rotation will then contain the 
lattice point PA of this pair. In some cases, however, this 
point PA can be very far from the actual, finite boundary 
between the two crystals. It may then be more conve- 
nient to take the axis of rotation closer to the grain 
boundary and use the appropriate translation t to define 
the relative orientation. It may also happen that the 
relative orientation is such that it can be described 
using a t as small as one wants, but not equal to zero; 
in this case an axis of misorientation near the boundary 
region is again a convenient choice. 

If the two lattices are related by a pure rotation, i.e. 
if t = 0 (or equivalent to zero) they have at least a com- 
mon lattice point. Conversely, if the two lattices have 
a common point, they can always be specified in such 
a way that t = 0. 

If t is perpendicular to w, the relative orientation 
(w, 0,t) of the two lattices can always be described by 
a pure rotation (w', 0) with the same angle 0, but the 
axis w', parallel to w, will not, in general, contain a 
lattice point (unless t is equivalent to zero). For 
instance, in Fig. l(b), where t is perpendicular to w, 
the axis w' contains the point P ' .  In what follows we 
shall always adhere to the convention that the axis of 
rotation contains a lattice point. 

When the lattice admits symmetry rotations, there 
will be as many equivalent axis/angle pairs for a given 
bicrystal as symmetry rotations of the lattice. In this 
case it may be convenient to choose the axis/angle 
pair that involves the smallest angle. In bicrystals 
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with cubic lattices there are 24 equivalent axis/angle 
pairs and the smallest angle 0 is always smaller than 
62°48 ' (Goux, 1961). It should be noted that t is not 
affected when the axis/angle pair is replaced by an 
equivalent one. 

3. The specification of the boundary region 

We shall now suppose that the two crystal lattices have 
a certain specific orientation, given by the 6 parameters 
(w, 0, t), and consider the problem of defining the transi- 
tion region between the two crystals, i.e. the grain 
boundary. The problem is more delicate than the one 
of specifying the relative orientation of the crystals, 
and different approaches are possible. 

Firstly, we shall use a simplified model for a grain 
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Fig. 1. Two differently oriented bicrystals AB. The axis of 
rotation is in both cases normal to the plane of the diagram 
and contains the lattice point P.4. The angle of rotation is 
0=53-1 °. In (a) the translation t=0, while in (b) t=½ v, 
where v is the lattice vector of A indicated in the Figure. In (b) 
the relative orientation of the two lattices could as well be 
described as a pure rotation, with the same 0, and axis con- 
taining P'. 
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Fig.2. Two-dimensional model of a planar boundary between 
two lattices A and B showing the alteration of the pattern at 
the boundary upon translation of the boundary plane. The 
relative orientation of the two lattices is the same in (a) and 
(b). 

boundary, assuming that the width of the boundary 
region is zero, so that on each side of the boundary 
surface the lattice points of the crystals A and B, 
respectively, are unperturbed (there may, eventually, 
be lattice points on the boundary surface). Let us 
consider, first, the case where the boundary surface is 
planar. The orientation of the plane of the boundary 
(or of its normal) is defined by two parameters. But 
it is also necessary to define the location of the plane 
relative to the two lattices A and B, since the atomic 
pattern at the boundary will, in general, be affected by 
a translation of the boundary plane (see example in 
Fig. 2). This means that a further parameter is required, 
for instance the distance of the plane to the lattice 
point PA referred to in the previous section. When the 
boundary is curved, the specification of the boundary 
surface will require 6 parameters so that the number 
of degrees of freedom will be 12. 

Actual grain boundaries in solids have widths of the 
order of 2-3 atom diameters and in the boundary 
region the atom sites will be more or less perturbed. 
Consequently, the concept of a boundary plane (or 
surface) is not strictly applicable. The difficulty can be 
overcome by introducing a definition of 'unperturbed' 
atom, as the one which occupies a position in the crys- 
tal within a certain small distance from its site in the 
perfect lattice. It would then be possible to define two 
surfaces limiting the boundary region, each containing 
the sites, closer to the boundary, of the unperturbed 
atoms of the two crystals. In this context the number of 
grain-boundary parameters would be quite large, and 
the specification of a grain boundary would become a 
complicated question. The situation can be simplified 
by indicating the 'average grain boundary surface', 
i.e. a surface lying between the two previously defined 
surfaces. 

4. Discussion 

The atomic structure and properties of a grain bound- 
ary depend, in general, on a large number of param- 
eters. In the simplest case of a planar boundary nine 
parameters are required to characterize the boundary. 
The relative orientation of the crystals is always 
specified by 6 parameters, while 3 or more are required 
to define the orientation and location of the transition 
region between the two crystals. 

Special grain boundaries such as coincidence lattice 
site (c.s.1.)boundaries (Ranganathan, 1966) and grain 
boundaries with a periodic pattern of atoms, may 
occur for particular values of the parameters, but the 
conditions to be satisfied are so stringent that such 
boundaries will be very rare, even in cubic lattices. It 
has been argued (e.g. Bishop & Chalmers, 1968) that 
small deviations from the correct parameters for a 
special grain boundary will only slightly affect the 
special properties of the boundary (e.g. low energy, 
high mobility). However, these deviations are not in 
general precisely defined and, as a rule, only the effect 
of a change in the axis/angle pair and orientation of 
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the plane of the boundary are considered. In particular-~complete information on the relative orientation of 
the effect of t on the structure of a grain boundary is the two crystals and on the location of the boundary. 
ignored, or at least not explicitly considered. For 
instance, for a bicrystal to be in a c.s.1, orientation it 
is necessary that t =  0. This is implied by the existence 
of common lattice points (cf. § 2). Even when the axis/ 
angle pair has the correct values for the existence of 
a c.s.l., it is necessary that t =  0 for a c.s.1, boundary to 
occur. Fig. 1 shows how the parameter t can profound- 
ly change the atomic configuration at the boundary. 

The necessity of so many parameters to characterize 
a grain boundary, together with the fact that small 
fluctuations of the boundary parameters may drasti- 
cally affect the properties of grain boundaries, make the 
experimental determination of the parameters a dif- 
ficult and important question. The methods generally 
employed (diffraction techniques) do not provide 

They only give the direction of the axis of misorienta- 
tion and the value of 0, while t remains undetermined. 
Field-ion microscopy is probably unique in providing 
complete information on the grain boundary param- 
eters (cf. Fortes & Smith, 1970). 
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The entrance and exit surfaces are defined with respect to the Poynting vector, and the Bragg and Laue 
cases are redefined separately with respect to the wave vector on the entrance and exit surfaces. In this 
paper, the diffraction phenomena in the Laue (on the entrance surface)-Bragg (on the exit surface) case 
are discussed on the basis of both the plane-wave and spherical-wave theories. The two-beam approx- 
imation is used throughout, by taking account of absorption. Total reflexion is expected on the exit 
surface inside the crystal for either direct or Bragg-reflected waves. The wave fields in the spherical-wave 
theory are represented by Bessel functions, in the forms which are very similar to the Laue case (Kato, 
J. Appl. Phys. (1968). 39, 2225).This implies that the reflected waves are regarded as a divergent cylind- 
rical wave starting from an imaginary focal point. The treatments described here are easily extended to 
more general cases in plane-bounded crystals. In this sense, this paper is a preparation for treating 
the diffraction phenomena in a finite polyhedral crystal. 

Introduction 

The phenomena of PendelNSsung in crystal diffraction 
were originally predicted by Ewald (1916) and ob- 
served first by Kato & Lang (1959) in the X-ray case. 
Kato (1961a, b) has interpreted theoretically the ob- 
served fringe pattern by regarding the incident wave as 
a spherical wave. This theory is called 'spherical-wave 
theory' and the corresponding wave fields are called 
'spherical-wave solutions'. The conventional theory in 
which the incident wave is regarded as a plane wave is 
called 'plane-wave theory' and the corresponding wave 
fields called 'plane-wave solutions'. Later, Kato, Usa- 
mi & Katagawa (1967) extended the spherical-wave 
theory to the case of the crystal including a stacking 
fault. 

In the above theories, although the exit surface is not 
necessarily parallel to the entrance surface, it is 
assumed that both O (direct) and G (Bragg-reflected) 
waves pass through the exit surface. In general cases, 
however, one of the O and G waves cannot pass 
through the exit surface when it is nearly parallel to the 
lattice plane concerned. In fact, Borrmann, Hilde- 
brandt & Wagner (1955), Borrmann & Lehmann 
(1963) and Lehmann & Borrmann (1967) have studied 
experimentally diffraction phenomena under this con- 
dition. They have also considered the plane-wave 
theory for a special geometry* and highly absorbing 
crystals. 

* A symmetrical Laue case in which the lattice plane is 
perpendicular to the entrance surface and parallel to the exit 
surface. 


